A Review on the Impact of Evolutionary Optimization Algorithms in Enhancing Learning Processes
Keywords:
Evolutionary Optimization, Genetic Algorithm, Particle Swarm Optimization, Differential Evolution, Machine Learning, Parameter TuningAbstract
This article provides a comprehensive review of the impact of evolutionary optimization algorithms on improving learning processes. Evolutionary algorithms, inspired by natural evolution, offer powerful tools for solving complex optimization problems in machine learning. The review covers the theoretical foundations of these algorithms, including Genetic Algorithms, Particle Swarm Optimization, and Differential Evolution, and explores their applications in enhancing learning models. The study compares the performance and effectiveness of these algorithms in various machine learning contexts, highlighting their strengths in optimizing parameters, feature selection, and model structure. Additionally, the review identifies challenges such as parameter tuning, computational complexity, and convergence to local optima, which can limit the effectiveness of these algorithms. The findings suggest that evolutionary optimization algorithms have significant potential to improve learning processes, but also underscore the need for further research to address existing gaps and refine these methods. This review concludes with recommendations for future research directions, emphasizing the importance of developing hybrid algorithms and improving parameter tuning methods to achieve better performance in complex and high-dimensional learning tasks.
Downloads
References
اسدی، م،. و همکاران. )1۴۰۰(. کاربرد الگور یتم های تکامل ی در بهینهسازی مسائل پیچی ده. مجله مهندسی کامپی وتر، 1۲)۳(،
.11۵-1۲۹
شریف ی، ع. )1۳۹۸(. کاربرد بهینهسازی گروه ذرات در بهبود عملکرد سیستمهای تشخیص گفتار. پژوهش های پیشرفته در
هوش مصنوعی ، ۵)۴(، .۸۷-۹۷
علیزاده، ح. ) 1۳۹۹(. بررسی تأثیر الگور یتم ژنتیک در بهبود عملکرد سیستم های توصیه گر. پژوهشنامه هوش مصنوعی، 1۰) ۲( ،
.۵۲-۶۴
Bäck, T. (1996). Evolutionary algorithms in theory and practice: Evolution
strategies, evolutionary programming, genetic algorithms. Oxford University Press .
Boussaïd, I., Lepagnot, J., & Siarry, P. (2013). A survey on optimization
metaheuristics. Information Sciences, 237, 82-117 .
Das, S., & Suganthan, P. N. (2011). Differential evolution: A survey of the state-ofthe-art. IEEE Transactions on Evolutionary Computation, 15(1), 4-31 .
Eiben, A. E., & Smith, J. E. (2003). Introduction to evolutionary computing.
Springer .
Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine
learning. Addison-Wesley .
Holland, J. H. (1975). Adaptation in natural and artificial systems. University of
Michigan Press .
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of
ICNN'95 - International Conference on Neural Networks (Vol. 4, pp. 1942-1948). IEEE .
Mitchell, M. (1998). An introduction to genetic algorithms. MIT Press .
Simon, D. (2013). Evolutionary optimization algorithms. John Wiley & Sons .
Storn, R., & Price, K. (1997). Differential evolution – a simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimization, 11(4),
-359 .
Yao, X. (1999). Evolving artificial neural networks. Proceedings of the IEEE, 87(9),
-1447 .
Zhang, J., Chen, Y., & Zhou, C. (2007). A novel hybrid particle swarm optimization.
Journal of Systems Engineering and Electronics, 18(1), 72-77.
Downloads
Published
Submitted
Revised
Accepted
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.