A Review on the Impact of Evolutionary Optimization Algorithms in Enhancing Learning Processes

Authors

    Sohrab Farhadi * Department of Educational Management, Urmia University, Urmia, Iran sohrab_farh@gmail.com
https://doi.org/10.61838/jsied.2.2.2

Keywords:

Evolutionary Optimization, Genetic Algorithm, Particle Swarm Optimization, Differential Evolution, Machine Learning, Parameter Tuning

Abstract

This article provides a comprehensive review of the impact of evolutionary optimization algorithms on improving learning processes. Evolutionary algorithms, inspired by natural evolution, offer powerful tools for solving complex optimization problems in machine learning. The review covers the theoretical foundations of these algorithms, including Genetic Algorithms, Particle Swarm Optimization, and Differential Evolution, and explores their applications in enhancing learning models. The study compares the performance and effectiveness of these algorithms in various machine learning contexts, highlighting their strengths in optimizing parameters, feature selection, and model structure. Additionally, the review identifies challenges such as parameter tuning, computational complexity, and convergence to local optima, which can limit the effectiveness of these algorithms. The findings suggest that evolutionary optimization algorithms have significant potential to improve learning processes, but also underscore the need for further research to address existing gaps and refine these methods. This review concludes with recommendations for future research directions, emphasizing the importance of developing hybrid algorithms and improving parameter tuning methods to achieve better performance in complex and high-dimensional learning tasks.

Downloads

Download data is not yet available.

References

اسدی، م،. و همکاران. )1۴۰۰(. کاربرد الگور یتم های تکامل ی در بهینهسازی مسائل پیچی ده. مجله مهندسی کامپی وتر، 1۲)۳(،

.11۵-1۲۹

شریف ی، ع. )1۳۹۸(. کاربرد بهینهسازی گروه ذرات در بهبود عملکرد سیستمهای تشخیص گفتار. پژوهش های پیشرفته در

هوش مصنوعی ، ۵)۴(، .۸۷-۹۷

علیزاده، ح. ) 1۳۹۹(. بررسی تأثیر الگور یتم ژنتیک در بهبود عملکرد سیستم های توصیه گر. پژوهشنامه هوش مصنوعی، 1۰) ۲( ،

.۵۲-۶۴

Bäck, T. (1996). Evolutionary algorithms in theory and practice: Evolution

strategies, evolutionary programming, genetic algorithms. Oxford University Press .

Boussaïd, I., Lepagnot, J., & Siarry, P. (2013). A survey on optimization

metaheuristics. Information Sciences, 237, 82-117 .

Das, S., & Suganthan, P. N. (2011). Differential evolution: A survey of the state-ofthe-art. IEEE Transactions on Evolutionary Computation, 15(1), 4-31 .

Eiben, A. E., & Smith, J. E. (2003). Introduction to evolutionary computing.

Springer .

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine

learning. Addison-Wesley .

Holland, J. H. (1975). Adaptation in natural and artificial systems. University of

Michigan Press .

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of

ICNN'95 - International Conference on Neural Networks (Vol. 4, pp. 1942-1948). IEEE .

Mitchell, M. (1998). An introduction to genetic algorithms. MIT Press .

Simon, D. (2013). Evolutionary optimization algorithms. John Wiley & Sons .

Storn, R., & Price, K. (1997). Differential evolution – a simple and efficient heuristic

for global optimization over continuous spaces. Journal of Global Optimization, 11(4),

-359 .

Yao, X. (1999). Evolving artificial neural networks. Proceedings of the IEEE, 87(9),

-1447 .

Zhang, J., Chen, Y., & Zhou, C. (2007). A novel hybrid particle swarm optimization.

Journal of Systems Engineering and Electronics, 18(1), 72-77.

Downloads

Published

2024-08-22

Submitted

2022-06-22

Revised

2022-06-28

Accepted

2022-07-06

Issue

Section

مقالات

How to Cite

Farhadi, S. (1403). A Review on the Impact of Evolutionary Optimization Algorithms in Enhancing Learning Processes. Journal of Study and Innovation in Education and Development, 2(2), 10-18. https://doi.org/10.61838/jsied.2.2.2

Similar Articles

1-10 of 72

You may also start an advanced similarity search for this article.