Analysis of the Use of Evolutionary Algorithms in Optimizing Adaptive Learning Systems
Keywords:
Evolutionary Algorithms, Adaptive Learning Systems, Genetic Algorithms, Ant Colony Optimization, Educational OptimizationAbstract
This article presents a comprehensive analysis of the application of evolutionary algorithms in optimizing adaptive learning systems. As education systems increasingly shift towards personalized learning environments, adaptive learning systems (ALS) have emerged as crucial tools to meet the diverse needs of learners. Evolutionary algorithms, inspired by natural evolutionary processes, offer potent solutions for optimizing various elements of ALS, such as content customization, learning paths, and resource allocation. This study reviews the most prominent evolutionary algorithms, including genetic algorithms, ant colony optimization, and multi-objective optimization algorithms, analyzing their effectiveness in different aspects of adaptive learning. The analysis reveals that while these algorithms significantly enhance the efficiency and personalization of learning experiences, challenges such as convergence issues and computational complexity remain. This article also identifies gaps in the existing literature and proposes directions for future research, emphasizing the need for long-term studies and the integration of evolutionary algorithms with other artificial intelligence methods.
Downloads
References
پرهی زکار، س،. حسین ی، ا،. و شری فی، م. )1398(. استفاده از الگوری تمهای ژنتیک در بهینه سازی محتوای آموزش ی سیستمهای
تطبیقی . مجله علم ی- پژوهش ی فناوری های نو ین آموزشی ، 12)3(، .82-67
منصوری ، ح،. رضایی، ع،. و شفیعی ، م. ) 1397(. کاربرد الگور یتم کلونی مورچگان در تخصی ص منابع آموزشی . فصلنامه
پژوهش های آموزش الکترونیک، 8)2(، .70-55
محمود ی، ا،. حسینی ، م،. و شری فی، ح. )1399(. بررسی الگور یتمهای تکامل ی در بهینه سازی س یستمهای آموزشی تطبیق ی.
مجله فناوری های نوی ن آموزش ی ، 15) 2(، .60-45
Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. John
Wiley & Sons .
Dorigo, M., & Stützle, T. (2004). Ant colony optimization. MIT Press .
Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine
learning. Addison-Wesley .
Holland, J. H. (1992). Adaptation in natural and artificial systems. MIT Press .
Mitchell, M. (1998). An introduction to genetic algorithms. MIT Press.
Downloads
Published
Submitted
Revised
Accepted
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.